DIMINISHING MATERIALS USE AND AIR POLLUTANTS IN FOUNDRIES VIA AN INTEGRATED ADVANCED **OXIDATION PROCESS PENN STATE FACULTY:** FRED S. CANNON **ROBERT C. VOIGT** SRIDHAR KOMARNENI STUDENTS: JASON CLOBES, WANG YUJUE, JOEL FIREBAUGH, JOSH LAND, NOHEMI MILAN SEGOVIA

Collaborators (formal and informal)

- Furness-Newburge, Jim Furness
- Neenah Foundry, Jeff Goudswaard
- Grede Reedsburg Foundry, Tom McManamy
- Victaulic Foundry, Gene Miller
- CERP-Technikon, Cliff Glowacki

GREENSAND FOUNDRIES FOR CAST IRON AND DUCTILE IRON METAL CASTING INDUSTRY EMPLOYS 200,000 PEOPLE IN U.S.

- 3000 FOUNDRIES CAST 10-16 MILLION TONS OF METAL CASTINGS PER YEAR
- 60% OF CASTINGS POURED IN GREEN SAND
- THE FOUNDRY INDUSTRY IS VITAL TO THE STRENGTH OF OUR NATION
- POLLUTION PREVENTION IS KEY

ADVANCED OXIDATION- BLACKWATER CLARIFIER PROCESS FOR POLLUTION PREVENTION IN GREEN SAND FOUNDRY

- HYDROGEN PEROXIDE, OZONE, SONICATION DOSED INTO SLURRY OF BAGHOUSE PARTICULATES
- VIA CLARIFIER, CLAYS RECLAIMED IN BLACKWATER, WHICH IS ROUTED TO SAND COOLER AND GREEN SAND
- THIS ADVANCED OXIDATION PROCESS
 DIMINISHES EMISSIONS BY 30-70%, AND
 DIMINISHES CLAY & COAL USE BY 20-35%

ADVANCED OXIDATION IN GREEN SAND FOUNDRY

POLLUTION-PREVENTION; SUSTAINABLE ENVIRONMENT

- AO: SONOPEROXONE[™] BACT IN INDIANA & U.S.
- SAVES A FOUNDRY \$1-2 MILLION PER YEAR IN LESS WASTE OF COAL, CLAY, AND SAND (PAYS FOR ITSELF IN 3-18 MONTHS)
- TESTS SHOW COMPLIANCE WITH NEW EPA STANDARD OF 20 PPMV VOC'S (VOLATILE ORGANIC COMPOUNDS)
- AO NOW USED ON 15-20 FOUNDRY LINES THAT PRODUCE 5-10% OF U.S. CASTINGS
- (WAS USED ON 4-5 LINES WHEN THIS RESEARCH STARTED)
- AVOIDS END-OF-PIPE INCINERATION

OBJECTIVES OF RESEARCH

- DOCUMENT EMISSIONS AND CLAY / COAL USE REDUCTIONS IN FULL-SCALE FOUNDRIES
- WHAT ARE NANO-SCALE / FUNDAMENTAL REASONS WHY THIS WORKS?
- HOW CAN WE MAKE THIS WORK BETTER?

DOCUMENTATION AT FULL SCALE: NEENAH FOUNDRY

SAND PARAMETER	BEFORE AO	AO-STABLE	%Δ
CLAY + COAL ADD (LB / TON IRON)	187	125	-33
GREEN COMPRESSIVE STRENGTH (PSI)	33.3	34.6	+4
LOSS ON IGNITION (%)	5.44	3.65	-33
LOI / COAL ADDED (% / LB/TON IRON)	0.119	0.130	+10
GCS / CLAY ADDED (PSI / LB/TON IRON)	0.244	0.369	+51

DOCUMENTATION AT FULL SCALE: NEENAH FOUNDRY

EMISSIONS PARAMETER	BEFORE AO	AO STABLE	%Δ
NO-CORE VOC'S	0.60	0.22	-63
(LB / TON IRON)			
AVERAGE-CORE	0.86	0.45	-47
VOC'S (LB / TON IRON)			
VERY HEAVY CORE	1.9	1.4	-26
VOC'S (LB / TON IRON)			
NO-CORE BENZENE	0.055	0.030	-45
(LB / TON IRON)			

VOC EMISSIONS AT NEENAH FOUNDRY

Figure 2 - Total Volatile Organic Compound (VOC) emissions performance during mold cooling plus shakeout: comparison of Non-AO-Optimized versus AO-stabilized sand systems at various core loadings

EMISSIONS AT CERP-TECHNICON (IN COLLABORATION WITH PENN STATE)

EMISSIONS PARAMETER	NO AO	WITH AO	%Δ
NO-CORE LOI (%)	5.0	3.6	-28
NO-CORE VOC'S	0.52	0.19	-64
(LB / TON IRON)			
HEAVY CORE LOI (%)	4.62	3.07	-34
HEAVY CORE BINDER	12.7	8.7	-31
(LB / TON IRON)* (CONFOUNDED)			
HEAVY CORE VOC'S (LB / TON IRON)*	1.14	0.61	-46

EMISSIONS AT CERP-TECHNICON (IN COLLABORATION WITH PENN STATE)

AT NANOSCALE, WHAT IS ADVANCED OXIDATION (AO) ACCOMPLISHING?

- CLAY PLATELETS LOSE CARBON COATING, SO HAVE MORE STRENGTH
- CLAY PLATELETS WITH AO CAN RETAIN
 WATER BETTER
- CLAY PLATELETS WITH AO HAVE SMALLER
 PARTICLE SIZE
- GREEN SAND WITH AO HAS MORE MICROPORES AND MESOPORES (CREATE ACTIVATED CARBON AS PP)
- GREEN SAND WITH AO CAN ADSORB ORGANIC COMPOUNDS BETTER (PP)

Surface elemental analysis of: (a) bentonite heated alone at 400°C, (b) bentonite heated with sea coal at 400°C, (c) AO–washed bentonite heated with sea coal at 400°C, (d) TAP-washed bentonite heated with sea coal at 400°C

Water adsorption of: (a) bentonite heated alone at 400°C, (b) bentonite heated with sea coal at 400°C, (c) AO–washed bentonite heated with sea coal at 400°C, (d) TAP-washed bentonite heated with sea coal at 400°C

ULTRASONICS DIMINISHES CLAY PLATELET EFFECTIVE SIZE,

SO MORE UNIT SURFACE AREA TO BIND (FROM 4.88 TO 3.08)

PORE VOLUME DISTRIBUTION

Pore Width (Angstroms)

ADSORPTION CAPACITY OF META-XYLENE: AO VS. NON-AO

YIELD 0.4-1.4 PPM OH* WITH SONOPEROXONETM ($H_2O_2, O_3, SONIC$)--BLUE. MORE THAN WITH JUST H_2O_2 --ORANGE

WHAT CAN WE DO YET BETTER?

- MORE INTENSE AO?
- ADD UNDERWATER PLASMA? (START TEST WITHIN MONTH AT VICTAULIC)
- USE TREATED GREEN SAND AS AO
 ADSORBENT OF EMISSIONS DURING
 SHAKEOUT (IN SAND COOLER)
- GREEN SAND THAT HAS BEEN ONCE-EXPOSED TO 100-200oC RELEASES FAR FEWER EMISSIONS (DATA NOT SHOWN). INTEGRATE THIS INTO PROCESS

PENN STATE DELIVERABLES / INDUSTRY INTERACTION

- 5 REFEREED PAPERS PUBLISHED
- 1 REFEREED BOOK CHAPTER SUBMITTED
- 3 PAPERS TO BE SUBMITTED FOR REFEREED PUB. WITHIN A MONTH
- PSU STUDENTS AT FOUNDRIES FOR 3 STUDENT-SUMMERS
- MORE THAN 10 SITE VISITS TO FOUNDRIES
- >8 PRESENTATIONS AT AMERICAN FOUNDRY SOCIETY, EPA CONFERENCES
- >6 WORKSHOPS WITH FOUNDRY FOLKS

FOUNDRIES THAT USE SONOPEROXONE[™]

- Neenah Foundry (2 Lines)
- Grede-Reedsburg
- International Truck and Engine-Waukesha (2 lines)
- Gregg Industries
- Waupaca-Marinette
- Dalton Foundry-Warsaw (2ND LINE 8/04)
- CERP-Technicon
- Riverside Brass and Aluminum
- Victaulic Company of America-Alburtis
- Wescast Industries Inc.-Wingham (7/04)
- Wheland (2 lines-plant idle)